Deep Vibro Techniques
Deep vibro techniques present flexible solutions for soil improvement. They are mainly used under foundations of structures that are to be constructed on soils of low bearing capacity.

Keller developed the depth vibrator (patented in 1934), which was originally used to compact granular soils such as sand and gravel.

Today Keller improves a variety of granular and cohesive soils employing a wide range of depth vibrator models and techniques.
Overview of deep vibro techniques

The subsoil
Usually the soil conditions are described in a soil investigation report. If the properties of the existing soil cannot fulfil the requirements set by the proposed loading conditions, deep vibro techniques offer an economical solution for the ground improvement. They can be carried out to almost any depth.

The depth vibrator
The cylindrical depth vibrator is typically between 3 m and 5 m long and weighs approximately 2 tons. The core element of the vibrator is an electrically driven eccentric weight which induces the horizontal oscillation of the vibrator. The vibrator string is assembled with the vibrator and extension tubes to suit the improvement depth and suspended from a crane or mounted on a custom built base machine (i.e. the Keller vibrocat).

The techniques
The depth vibrator is used for 3 distinct techniques which differ both in their soil improvement and in their load transfer mechanism. The foundation design is therefore frequently developed by Keller in close cooperation between both the consultant’s geotechnical and structural engineers.
The Vibro Compaction technique compacts granular soils with negligible fines content by rearrangement of the soil particles into a denser state.
The Vibro Replacement technique builds load bearing columns made from gravel or crushed stones in cohesive soils and granular soils with high fines content.
The third technique creates structural foundation elements in the ground which will allow comparatively high loads to be safely carried by soils where no adequate lateral support for Vibro Replacement columns can be mobilized.

The execution
For all techniques the vibro process starts with the penetration of the oscillating depth vibrator into the ground to the required improvement depth. Subsequently, the vibrator is then removed as required by the employed technique to either compact the soil from the bottom up, to build a stone column or to construct a structural foundation element.

The benefits
The deep vibro techniques present a very versatile ground improvement method that can be adjusted to a wide variety of ground conditions and foundation requirements. Its execution is comparatively fast even if large volumes of soil are to be improved and subsequent structural works can follow very quickly. The soil improvement enables the contractor to utilise standard shallow footings which, in turn, leads to additional savings. Another advantage is the environmental friendliness of the deep vibro techniques, as natural and in situ materials are used. In addition, only a comparatively small quantity of soil is removed during the process.

Limits of application for deep vibro techniques

<table>
<thead>
<tr>
<th>Grain size [mm]</th>
<th>Clay</th>
<th>Silt</th>
<th>Sand</th>
<th>Transition zone</th>
<th>Gravel</th>
<th>Cobbles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.002</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>0.006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Grain size [mm]

The principle of the vibro process
The Vibro Compaction process in granular soils

Equipment and execution
The compaction of granular soils is most economically attained with vibrators oscillating at a comparatively low frequency to achieve optimum compaction of the soil particles. The vibrator is typically suspended from a crane. The penetration of the vibrator and, to a certain extent also the compaction process, is aided by water flushing with jets of variable pressure. The pressure pipes and jets form an integral part of the vibrator string. The compaction is carried out from the bottom of penetration upwards in predetermined pull out steps and compaction intervals. The compaction result is dependent on the effectiveness of the vibrator and the soil conditions.

Geotechnical aspects
Under the influence of the induced vibration, the soil particles within the zone of influence are rearranged and compacted. The range of this zone depends on the vibrator used, the soil and the method employed. The volume reduction of the compacted soil can reach values in the order of 15% depending on the soil conditions and the intensity of the compaction effort.

The process

1 **Penetration**
At full water pressure the oscillating vibrator penetrates to the design depth and is surged up and down as necessary to agitate the sand, remove fines and form an annular gap around the vibrator. At full depth the water flow is reduced or stopped.

The foundation concept
The range of compaction for an individual point is governed by several parameters. Keller is able to draw upon a wealth of experience to propose a suitable foundation concept. The optimum arrangement of the vibro compaction points is usually best achieved by an on-site trial, where different compaction grids and methods can be tested and evaluated. After compaction, high loads can be safely carried and can reach foundation pressures of up to 1 MN/m².

The layout of the compaction points can be adjusted in such a manner that soil volumes of any size are compacted. The achieved degree of compaction can be easily and economically verified using a range of different tests.
Natural or man made deposits of sand and gravel are frequently not dense enough or are too inhomogeneous to allow a proposed structure to be safely and reliably founded. With Keller’s depth vibrators the soil density can be increased and homogenized independently from the groundwater table.

2 Compaction
The compaction is carried out in steps from the maximum depth of penetration upwards. It encompasses a cylindrical soil body of up to 5 m diameter. The increase in density is indicated by an increased power consumption of the vibrator.

3 Backfilling
Around the vibrator a crater develops which is backfilled with sand, which is either imported (A) or taken from the existing soil (B). For this purpose a volume of up to 15% of the treated soil volume is required.

4 Finishing
After completion of the compaction, the surface is relevelled and, if required, compacted with a surface vibratory roller.

Special applications
With depth vibrators, slender elements such as dolphins, soil anchors or steel profiles can be sunk into sandy soils and securely anchored. A further field of application is the densification of embankment zones and excavation bases to reduce their permeability.

As early as 1939 a compaction depth of 35 m was reached on a site in Berlin. Nowadays maximum compaction depths beyond 50 m have been achieved.
Vibro Replacement in granular soils with high fines content and in cohesive soils

Equipment and execution
For the construction of Vibro Replacement columns the bottom feed process is frequently employed, which feeds coarse granular material to the tip of the vibrator with the aid of pressurized air. To optimize the performance of this process and to accommodate the specialized equipment, Keller has developed the vibrocat base unit which guides the vibrator on its leader and allows the exertion of an additional pull-down pressure during penetration and compaction. The Vibro Replacement process consists of alternating steps. During the retraction step, gravel runs from the vibrator tip into the annular space created and is then compacted and pressed into the surrounding soil during the following re-penetration step. In this manner stone columns are created from the bottom up, which act as a composite with the surrounding soil under load.

Geotechnical aspects
Insofar as any compaction can be achieved in mixed or fine grained soils through horizontal vibrations and soil displacement (which depends mainly on their degree of saturation), this improvement should be evaluated in the same manner as Vibro Compaction. The pure Vibro Replacement process, however, does not assume any compaction in the surrounding soil.

The improvement relies on the higher stiffness and higher shear strength of the stone column.

The foundation concept
While the compaction of the surrounding soil can be easily verified by soundings, the improvement effect of the Vibro Replacement can only be checked by in situ load tests. Keller has developed a reliable design method which uses the geometry of the columns and the friction angle of the column material as input parameters. For the foundation design, the improved ground is treated like normal subsoil. The allowable bearing pressure that is achieved after the improvement is typically in the range of 150 to 400 kPa.

The process

1. **Preparation**
The vibrocat positions the vibrator over the required location of the compaction point and stabilises itself using hydraulic supports. A wheel loader fills the skip with aggregate.

2. **Charging**
The skip is lifted and empties its contents into the air chamber. Once the air lock is closed, the material flow towards the vibrator tip is assisted by pressurized air.

Design diagram for Vibro Replacement

The settlement evaluation for single footings is shown in the graph below.

Settlement evaluation for single footings

\[s_{\infty} / s \]

*\(s_{\infty} \) = settlement of a theoretical infinite load area

\[\text{Depth ratio t/d} \]

\[\text{No. of stone columns} \]

The graph illustrates the settlement evaluation for single footings, showing the relationship between the settlement ratio and the depth ratio for various numbers of stone columns.
Mixed grained and fine grained soils frequently do not possess a sufficient bearing capacity. For a fines content in excess of 10% to 15% a sufficient compaction result without imported material cannot be expected. For these cases the Vibro Replacement technique is a viable option. This technique is also suitable for the treatment of coarse fills such as rubble, building debris and slag heaps.

3 Penetration
The vibrator displaces the soil and is lowered to the design depth, aided by the compressed air and by the vibrocat’s pull-down.

4 Compaction
After reaching the maximum depth the vibrator is pulled up slightly, causing the aggregate to fill the cavity created. During re-penetration the aggregate is compacted and pressed into the surrounding soil.

5 Finishing
The stone column is built up in alternating steps up to the design level. During the final levelling, the surface requires to be re-compactd or a blinding layer is required as an alternative.

Benefits of working with the bottom feed vibrator:

- The aggregate is always fed directly to the tip of the vibrator, creating a continuous column.
- Only a single penetration is required.
- The collapse of the hole is not possible due to the compressed air even in critical soils.
- The leader ensures the verticality of the columns.
- No water is required, eliminating the necessity to dispose of any mud otherwise created.
Structural Foundation Elements

Premixed Vibro Concrete Columns (PVCC)

Equipment and execution
These foundation elements are built in the same manner as described for the Vibro Replacement process. For premixed vibro concrete columns, a special coarse grained concrete mix typically ranging between strengths C8/10 to C25/30 is installed. It behaves identically to the stone material, allowing the same compaction and displacement effects in the surrounding soil.

Geotechnical aspects
The load bearing behaviour of the structural foundation elements is largely identical to the behaviour of piles.

The foundation concept
For Premixed Vibro Concrete Columns Keller has the approval of the German supervisory board for construction. The external load bearing mechanism that is used for the design of the soil improvement is very well supported by a large number of load test results as per DIN 1054. Depending on the soil conditions and the materials used, working loads of up to 900 kN can be routinely achieved. Vibro concrete columns can be easily combined with the normal Vibro Replacement method by eliminating the use of concrete in the upper or lower section of the column as required, thus creating a buffer or transition zone to the rigid concrete columns.
This method is employed if the fine grained subsoil does not mobilize sufficient lateral support for stone columns or when high organic contents are found which decompose and cause soil shrinkage. Another field of application is the foundation of structures with high loads.

Vibro Concrete Columns (VCC)

Equipment and Execution
Vibro Concrete Columns consist typically of pumpable concrete, with C20/25 strength. The toe of the column is enlarged by repeated retraction and repenetration of the vibrator; however the shaft is built in a single pull due to the high internal strength of the concrete.

Geotechnical aspects
During the installation of Vibro Concrete Columns no particular effort is taken to densify any specific soil layer. As with other structural foundation elements, a high degree of improvement can be achieved at the toe of the column, thus attaining a particularly high capacity and low deformations under load.

The foundation concept
For Vibro Concrete Columns Keller also has the approval of the German supervisory board for construction. Vibro Concrete Columns are generally more slender compared to other structural foundation elements. Typical shaft diameters range between 40 cm and 60 cm. The capacity under working load reaches up to 1200 kN depending on the ground conditions and on the possibility to enlarge the toe.
Special Applications

Multiple Vibrators and Offshore Compaction
Vibro Compaction of large areas both onshore and offshore can be carried out with multiple vibrator assemblies.

For Vibro Replacement offshore, such as for quay walls and bridge pillars, a special gravel pump is used to construct columns with the bottom feed process.

Vibro Replacement – Top Feed Method
In suitable ground conditions the Vibro Replacement process can be performed using crane hung vibrators similar to the Vibro Compaction setup. In this case water or air flushing is used. The flushing medium assists rapid penetration into the ground and stabilizes the annulus around the vibrator. It also can be used to increase the column diameter.
Quality Control

For all vibro techniques, electronic measuring devices can be employed to ensure and record constant high quality of workmanship.

The measuring device
To control the process, monitor the quality and for production records, the relevant construction parameters for each compaction probe can be measured, saved and printed as proof of production and quantities.

The measurement device consists of
- The display unit in the operator’s cabin,
- The CPU with data storage,
- PC with printer at the site office,
- Dot-matrix printer mounted on the base unit for real time printout (optional).

The measurement results
During compaction a number of different site and production parameters are automatically recorded.
Values such as time, depth, penetration/pullout speed, pull-down force and current can be graphically displayed and printed. If required, the energy consumption can be recorded.